View-Invariant Modeling and Recognition of Human Actions Using Grammars
نویسندگان
چکیده
In this paper, we represent human actions as short sequences of atomic body poses. The knowledge of body pose is stored only implicitly as a set of silhouettes seen from multiple viewpoints; no explicit 3D poses or body models are used, and individual body parts are not identified. Actions and their constituent atomic poses are extracted from a set of multiview multiperson video sequences by an automatic keyframe selection process, and are used to automatically construct a probabilistic context-free grammar (PCFG). Given a new single viewpoint video, we can parse it to recognize actions and changes in viewpoint simultaneously. Experimental results are provided.
منابع مشابه
Improved Discriminative Model for View- Invariant Human Action Recognition
Recognizing human actions play an important role in applications like video surveillance. The recent past has witnessed an increasing research on view-invariant action recognition. Huang et al. proposed a framework based on discriminative model for human action recognition. This model uses STIP (Space – Time Interest Point) to extract motion features and view invariants. Then a discriminative m...
متن کاملAn Experimental Study on Blinking and Eye Movement Detection via EEG Signals for Human-Robot Interaction Purposes Based on a Spherical 2-DOF Parallel Robot
Blinking and eye movement are one of the most important abilities that most people have, even people with spinal cord problem. By using this ability these people could handle some of their activities such as moving their wheelchair without the help of others. One of the most important fields in Human-Robot Interaction is the development of artificial limbs working with brain signals. The purpos...
متن کاملView-Invariance in Action Recognition
Automatically understanding human actions using motion trajectories derived from video sequences is a very challenging problem. Since an action takes place in 3-D, and is projected on 2-D image, depending on the viewpoint of the camera, the projected 2-D trajectory may vary. Therefore, the same action may have very different trajectories, and trajectories of different actions may look the same....
متن کاملView-Invariant Representation and Learning of Human Action
Automatically understanding human actions from video sequences is a very challenging problem. This involves the extraction of relevant visual information from a video sequence, representation of that information in a suitable form, and interpretation of visual information for the purpose of recognition and learning. In this paper, we first present a view-invariant representation of action consi...
متن کاملA View-Invariant Representation of Human Action
The representation plays an important role in recognition and understanding of human action from video sequences. A view-invariant representation of action consisting of dynamic instants and intervals, which is computed using spatiotemporal curvature of a trajectory, is presented. In order to validate our representation, we report experiments on several different actions performed by different ...
متن کامل